Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 596(7871): 296-300, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34349264

RESUMO

During the splicing of introns from precursor messenger RNAs (pre-mRNAs), the U2 small nuclear ribonucleoprotein (snRNP) must undergo stable integration into the spliceosomal A complex-a poorly understood, multistep process that is facilitated by the DEAD-box helicase Prp5 (refs. 1-4). During this process, the U2 small nuclear RNA (snRNA) forms an RNA duplex with the pre-mRNA branch site (the U2-BS helix), which is proofread by Prp5 at this stage through an unclear mechanism5. Here, by deleting the branch-site adenosine (BS-A) or mutating the branch-site sequence of an actin pre-mRNA, we stall the assembly of spliceosomes in extracts from the yeast Saccharomyces cerevisiae directly before the A complex is formed. We then determine the three-dimensional structure of this newly identified assembly intermediate by cryo-electron microscopy. Our structure indicates that the U2-BS helix has formed in this pre-A complex, but is not yet clamped by the HEAT domain of the Hsh155 protein (Hsh155HEAT), which exhibits an open conformation. The structure further reveals a large-scale remodelling/repositioning of the U1 and U2 snRNPs during the formation of the A complex that is required to allow subsequent binding of the U4/U6.U5 tri-snRNP, but that this repositioning is blocked in the pre-A complex by the presence of Prp5. Our data suggest that binding of Hsh155HEAT to the bulged BS-A of the U2-BS helix triggers closure of Hsh155HEAT, which in turn destabilizes Prp5 binding. Thus, Prp5 proofreads the branch site indirectly, hindering spliceosome assembly if branch-site mutations prevent the remodelling of Hsh155HEAT. Our data provide structural insights into how a spliceosomal helicase enhances the fidelity of pre-mRNA splicing.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Precursores de RNA/química , Precursores de RNA/genética , Splicing de RNA , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Spliceossomos/enzimologia , Actinas/genética , Adenosina/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , RNA Helicases DEAD-box/ultraestrutura , Modelos Moleculares , Mutação , Domínios Proteicos , Precursores de RNA/metabolismo , Precursores de RNA/ultraestrutura , Splicing de RNA/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteína Nuclear Pequena U2/química , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Spliceossomos/química , Spliceossomos/metabolismo
2.
Mol Cell ; 81(9): 1920-1934.e9, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33689748

RESUMO

Transcription by RNA polymerase II (Pol II) is coupled to pre-mRNA splicing, but the underlying mechanisms remain poorly understood. Co-transcriptional splicing requires assembly of a functional spliceosome on nascent pre-mRNA, but whether and how this influences Pol II transcription remains unclear. Here we show that inhibition of pre-mRNA branch site recognition by the spliceosome component U2 snRNP leads to a widespread and strong decrease in new RNA synthesis from human genes. Multiomics analysis reveals that inhibition of U2 snRNP function increases the duration of Pol II pausing in the promoter-proximal region, impairs recruitment of the pause release factor P-TEFb, and reduces Pol II elongation velocity at the beginning of genes. Our results indicate that efficient release of paused Pol II into active transcription elongation requires the formation of functional spliceosomes and that eukaryotic mRNA biogenesis relies on positive feedback from the splicing machinery to the transcription machinery.


Assuntos
RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Spliceossomos/enzimologia , Elongação da Transcrição Genética , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Células HeLa , Humanos , Células K562 , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/genética , Ribonucleoproteína Nuclear Pequena U2/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/genética , Fatores de Tempo
3.
Environ Microbiol ; 21(12): 4488-4503, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31291045

RESUMO

FgPrp4, the only kinase in the spliceosome, is not essential for viability, but is important for splicing efficiency in Fusarium graminearum. The Fgprp4 deletion mutant had severe growth defects but often produced spontaneous suppressors with faster growth rate. To better understand the suppression mechanism, we identified and characterized spontaneous mutations in the tri-snRNP-specific protein, FgSad1, which suppressed the growth defects of Fgprp4. The L512P mutation was verified for its suppressive effects on Fgprp4, suggesting that mutations in FgSad1 may have effects involving FgPrp4 phosphorylation on FgSad1. Phosphoproteomics analysis showed that FgSad1 may not be the direct substrate of FgPrp4 kinase. Furthermore, truncation analysis showed that the N-terminal, extra RS-rich region of FgSad1 is critical for its function and is post-translationally modified. The P258S or S269P mutations in FgSad1 increased its interactions with the U5 protein FgPrp8 and the U4/U6 protein FgPrp31, which may result in tri-snRNP stabilization. Additionally, the D76N mutation increased the association of FgSad1 with the U2 snRNP. These data indicate that suppressor mutations in FgSad1 increase the stability of the tri-snRNP and/or the affinity of FgSad1 with U2 snRNP and therefore potentially facilitate the docking of tri-snRNP into the spliceosome.


Assuntos
Fusarium/genética , Proteínas Serina-Treonina Quinases/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Sequência de Aminoácidos , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Splicing de RNA , RNA Fúngico , Deleção de Sequência , Spliceossomos/enzimologia , Spliceossomos/metabolismo
4.
Mol Cell ; 68(5): 926-939.e4, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29153391

RESUMO

Bacterial group II intron reverse transcriptases (RTs) function in both intron mobility and RNA splicing and are evolutionary predecessors of retrotransposon, telomerase, and retroviral RTs as well as the spliceosomal protein Prp8 in eukaryotes. Here we determined a crystal structure of a full-length thermostable group II intron RT in complex with an RNA template-DNA primer duplex and incoming deoxynucleotide triphosphate (dNTP) at 3.0-Å resolution. We find that the binding of template-primer and key aspects of the RT active site are surprisingly different from retroviral RTs but remarkably similar to viral RNA-dependent RNA polymerases. The structure reveals a host of features not seen previously in RTs that may contribute to distinctive biochemical properties of group II intron RTs, and it provides a prototype for many related bacterial and eukaryotic non-LTR retroelement RTs. It also reveals how protein structural features used for reverse transcription evolved to promote the splicing of both group II and spliceosomal introns.


Assuntos
Proteínas de Bactérias/química , Evolução Molecular , Splicing de RNA , DNA Polimerase Dirigida por RNA/química , Temperatura , Transcrição Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Estabilidade Enzimática , Íntrons , Modelos Moleculares , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Ligação Proteica , Desnaturação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA/química , RNA/genética , RNA/metabolismo , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Retroelementos , Spliceossomos/química , Spliceossomos/enzimologia , Spliceossomos/genética , Relação Estrutura-Atividade
5.
J Biol Chem ; 292(44): 18113-18128, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28878014

RESUMO

The de novo assembly and post-splicing reassembly of the U4/U6.U5 tri-snRNP remain to be investigated. We report here that ZIP, a protein containing a CCCH-type zinc finger and a G-patch domain, as characterized by us previously, regulates pre-mRNA splicing independent of RNA binding. We found that ZIP physically associates with the U4/U6.U5 tri-small nuclear ribonucleoprotein (tri-snRNP). Remarkably, the ZIP-containing tri-snRNP, which has a sedimentation coefficient of ∼35S, is a tri-snRNP that has not been described previously. We also found that the 35S tri-snRNP contains hPrp24, indicative of a state in which the U4/U6 di-snRNP is integrating with the U5 snRNP. We found that the 35S tri-snRNP is enriched in the Cajal body, indicating that it is an assembly intermediate during 25S tri-snRNP maturation. We showed that the 35S tri-snRNP also contains hPrp43, in which ATPase/RNA helicase activities are stimulated by ZIP. Our study identified, for the first time, a tri-snRNP intermediate, shedding new light on the de novo assembly and recycling of the U4/U6.U5 tri-snRNP.


Assuntos
Processamento Alternativo , Antígenos de Neoplasias/metabolismo , Biogênese de Organelas , RNA Helicases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Spliceossomos/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Corpos Enovelados/química , Corpos Enovelados/enzimologia , Corpos Enovelados/metabolismo , Células HeLa , Humanos , Imunoprecipitação , Células MCF-7 , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Peso Molecular , Mutação , Coloração Negativa , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Multimerização Proteica , Estabilidade Proteica , RNA Helicases/química , RNA Helicases/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Spliceossomos/química , Spliceossomos/enzimologia , Proteases Específicas de Ubiquitina/química , Proteases Específicas de Ubiquitina/genética
6.
Methods ; 125: 63-69, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28668587

RESUMO

The splicing of eukaryotic precursor mRNAs requires the activity of at least three DEAD-box helicases, one Ski2-like helicase and four DEAH-box helicases. High resolution structures for five of these spliceosomal helicases were obtained by means of X-ray crystallography. Additional low resolution structural information could be derived from single particle cryo electron microscopy and small angle X-ray scattering. The functional characterization includes biochemical methods to measure the ATPase and helicase activities. This review gives an overview on the techniques used to gain insights in to the structure and function of spliceosomal helicases.


Assuntos
Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , RNA Helicases/ultraestrutura , Splicing de RNA/genética , Spliceossomos/enzimologia , Modelos Moleculares , Mutação , Conformação Proteica , RNA Helicases/química , RNA Helicases/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos
7.
J Med Chem ; 60(13): 5759-5771, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28586220

RESUMO

Brr2 is an RNA helicase belonging to the Ski2-like subfamily and an essential component of spliceosome. Brr2 catalyzes an ATP-dependent unwinding of the U4/U6 RNA duplex, which is a critical step for spliceosomal activation. An HTS campaign using an RNA-dependent ATPase assay and initial SAR study identified two different Brr2 inhibitors, 3 and 12. Cocrystal structures revealed 3 binds to an unexpected allosteric site between the C-terminal and the N-terminal helicase cassettes, while 12 binds an RNA-binding site inside the N-terminal cassette. Selectivity profiling indicated the allosteric inhibitor 3 is more Brr2-selective than the RNA site binder 12. Chemical optimization of 3 using SBDD culminated in the discovery of the potent and selective Brr2 inhibitor 9 with helicase inhibitory activity. Our findings demonstrate an effective strategy to explore selective inhibitors for helicases, and 9 could be a promising starting point for exploring molecular probes to elucidate biological functions and the therapeutic relevance of Brr2.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , RNA Helicases/antagonistas & inibidores , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , RNA Helicases/química , RNA Helicases/metabolismo , Spliceossomos/efeitos dos fármacos , Spliceossomos/enzimologia , Spliceossomos/metabolismo
8.
Mol Cell ; 63(2): 218-228, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27397683

RESUMO

Phosphorylation has been generally thought to activate the SR family of splicing factors for efficient splice-site recognition, but this idea is incompatible with an early observation that overexpression of an SR protein kinase, such as the CDC2-like kinase 1 (CLK1), weakens splice-site selection. Here, we report that CLK1 binds SR proteins but lacks the mechanism to release phosphorylated SR proteins, thus functionally inactivating the splicing factors. Interestingly, CLK1 overcomes this dilemma through a symbiotic relationship with the serine-arginine protein kinase 1 (SRPK1). We show that SRPK1 interacts with an RS-like domain in the N terminus of CLK1 to facilitate the release of phosphorylated SR proteins, which then promotes efficient splice-site recognition and subsequent spliceosome assembly. These findings reveal an unprecedented signaling mechanism by which two protein kinases fulfill separate catalytic features that are normally encoded in single kinases to institute phosphorylation control of pre-mRNA splicing in the nucleus.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , Spliceossomos/enzimologia , Catálise , Células HeLa , Humanos , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Interferência de RNA , Precursores de RNA/genética , RNA Mensageiro/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Spliceossomos/genética , Fatores de Tempo , Transfecção , Globinas beta/genética , Globinas beta/metabolismo
9.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 5): 409-16, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27139834

RESUMO

Prp28 (pre-mRNA-splicing ATP-dependent RNA helicase 28) is a spliceosomal DEAD-box helicase which is involved in two steps of spliceosome assembly. It is required for the formation of commitment complex 2 in an ATP-independent manner as well as for the formation of the pre-catalytic spliceosome, which in contrast is ATP-dependent. During the latter step, Prp28 is crucial for the integration of the U4/U6·U5 tri-snRNP since it displaces the U1 snRNP and allows the U6 snRNP to base-pair with the 5'-splice site. Here, the crystal structure of Prp28 from the thermophilic fungus Chaetomium thermophilum is reported at 3.2 Šresolution and is compared with the available structures of homologues.


Assuntos
Chaetomium/enzimologia , RNA Helicases/química , Spliceossomos/enzimologia , Cristalografia por Raios X , Conformação Proteica
10.
Genes Dev ; 29(24): 2576-87, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26637280

RESUMO

The Brr2 helicase provides the key remodeling activity for spliceosome catalytic activation, during which it disrupts the U4/U6 di-snRNP (small nuclear RNA protein), and its activity has to be tightly regulated. Brr2 exhibits an unusual architecture, including an ∼ 500-residue N-terminal region, whose functions and molecular mechanisms are presently unknown, followed by a tandem array of structurally similar helicase units (cassettes), only the first of which is catalytically active. Here, we show by crystal structure analysis of full-length Brr2 in complex with a regulatory Jab1/MPN domain of the Prp8 protein and by cross-linking/mass spectrometry of isolated Brr2 that the Brr2 N-terminal region encompasses two folded domains and adjacent linear elements that clamp and interconnect the helicase cassettes. Stepwise N-terminal truncations led to yeast growth and splicing defects, reduced Brr2 association with U4/U6•U5 tri-snRNPs, and increased ATP-dependent disruption of the tri-snRNP, yielding U4/U6 di-snRNP and U5 snRNP. Trends in the RNA-binding, ATPase, and helicase activities of the Brr2 truncation variants are fully rationalized by the crystal structure, demonstrating that the N-terminal region autoinhibits Brr2 via substrate competition and conformational clamping. Our results reveal molecular mechanisms that prevent premature and unproductive tri-snRNP disruption and suggest novel principles of Brr2-dependent splicing regulation.


Assuntos
Modelos Moleculares , RNA Helicases/química , RNA Helicases/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/enzimologia , Adenosina Trifosfatases/metabolismo , Chaetomium/enzimologia , Chaetomium/genética , Cristalização , Humanos , Ligação Proteica , Dobramento de Proteína , Processamento de Proteína , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , RNA Helicases/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/genética
11.
PLoS Pathog ; 10(6): e1004164, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24945353

RESUMO

Influenza A viruses are major pathogens in humans and in animals, whose genome consists of eight single-stranded RNA segments of negative polarity. Viral mRNAs are synthesized by the viral RNA-dependent RNA polymerase in the nucleus of infected cells, in close association with the cellular transcriptional machinery. Two proteins essential for viral multiplication, the exportin NS2/NEP and the ion channel protein M2, are produced by splicing of the NS1 and M1 mRNAs, respectively. Here we identify two human spliceosomal factors, RED and SMU1, that control the expression of NS2/NEP and are required for efficient viral multiplication. We provide several lines of evidence that in infected cells, the hetero-trimeric viral polymerase recruits a complex formed by RED and SMU1 through interaction with its PB2 and PB1 subunits. We demonstrate that the splicing of the NS1 viral mRNA is specifically affected in cells depleted of RED or SMU1, leading to a decreased production of the spliced mRNA species NS2, and to a reduced NS2/NS1 protein ratio. In agreement with the exportin function of NS2, these defects impair the transport of newly synthesized viral ribonucleoproteins from the nucleus to the cytoplasm, and strongly reduce the production of infectious influenza virions. Overall, our results unravel a new mechanism of viral subversion of the cellular splicing machinery, by establishing that the human splicing factors RED and SMU1 act jointly as key regulators of influenza virus gene expression. In addition, our data point to a central role of the viral RNA polymerase in coupling transcription and alternative splicing of the viral mRNAs.


Assuntos
Processamento Alternativo , Proteínas Cromossômicas não Histona/metabolismo , Citocinas/metabolismo , Vírus da Influenza A/fisiologia , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Citocinas/antagonistas & inibidores , Citocinas/química , Citocinas/genética , Inativação Gênica , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/enzimologia , Carioferinas/genética , Carioferinas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , RNA Polimerase Dependente de RNA/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Spliceossomos/enzimologia , Spliceossomos/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética , Replicação Viral
12.
Chromosoma ; 122(3): 191-207, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23525660

RESUMO

Genomic sequencing reveals similar but limited numbers of protein-coding genes in different genomes, which begs the question of how organismal diversities are generated. Alternative pre-mRNA splicing, a widespread phenomenon in higher eukaryotic genomes, is thought to provide a mechanism to increase the complexity of the proteome and introduce additional layers for regulating gene expression in different cell types and during development. Among a large number of factors implicated in the splicing regulation are the SR protein family of splicing factors and SR protein-specific kinases. Here, we summarize the rules for SR proteins to function as splicing regulators, which depend on where they bind in exons versus intronic regions, on alternative exons versus flanking competing exons, and on cooperative as well as competitive binding between different SR protein family members on many of those locations. We review the importance of cycles of SR protein phosphorylation/dephosphorylation in the splicing reaction with emphasis on the recent molecular insight into the role of SR protein phosphorylation in early steps of spliceosome assembly. Finally, we highlight recent discoveries of SR protein-specific kinases in transducing growth signals to regulate alternative splicing in the nucleus and the connection of both SR proteins and SR protein kinases to human diseases, particularly cancer.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Humanos , Proteínas Quinases/genética , Proteínas de Ligação a RNA/genética , Spliceossomos/enzimologia , Spliceossomos/genética , Spliceossomos/metabolismo
13.
Genes Dev ; 26(21): 2408-21, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23124065

RESUMO

Brr2p is one of eight RNA helicases involved in pre-mRNA splicing. Detailed understanding of the functions of Brr2p and other spliceosomal helicases has been limited by lack of knowledge of their in vivo substrates. To address this, sites of direct Brr2p-RNA interaction were identified by in vivo UV cross-linking in budding yeast. Cross-links identified in the U4 and U6 small nuclear RNAs (snRNAs) suggest U4/U6 stem I as a Brr2p substrate during spliceosome activation. Further Brr2p cross-links were identified in loop 1 of the U5 snRNA and near splice sites and 3' ends of introns, suggesting the possibility of a previously uncharacterized function for Brr2p in the catalytic center of the spliceosome. Consistent with this, mutant brr2-G858R reduced second-step splicing efficiency and enhanced cross-linking to 3' ends of introns. Furthermore, RNA sequencing indicated preferential inhibition of splicing of introns with structured 3' ends. The Brr2-G858Rp cross-linking pattern in U6 was consistent with an open conformation for the catalytic center of the spliceosome during first-to-second-step transition. We propose a previously unsuspected function for Brr2p in driving conformational rearrangements that lead to competence for the second step of splicing.


Assuntos
RNA Helicases/química , RNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Spliceossomos/enzimologia , Ativação Enzimática , Ligação Proteica , Conformação Proteica , RNA Helicases/genética , Splicing de RNA , RNA Fúngico/metabolismo , RNA Nuclear Pequeno/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
FEBS Lett ; 586(7): 977-83, 2012 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-22569250

RESUMO

RNA binding motif protein 5 (RBM5) is a candidate tumor suppressor gene. Recent studies showed that RBM5 functions as an alternative splicing regulator of apoptosis-related genes. Here, we identify DHX15 and PRP19, two spliceosome components, as novel RBM5-interacting partners. We then show that the G-patch domain of RBM5 is indispensable for its ability to interact with DHX15. Strikingly, we find that RBM5 stimulates the helicase activity of DHX15 in a G patch domain-dependent manner in vitro. Helicase activities play critical roles in modulating pre-mRNA splicing. Our findings thus suggest a new mechanism underlying the regulatory roles of RBM5 in pre-mRNA splicing.


Assuntos
Proteínas de Ciclo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Células Clonais , RNA Helicases DEAD-box/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Cinética , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonucleoproteína Nuclear Pequena U2/genética , Alinhamento de Sequência , Spliceossomos/enzimologia , Spliceossomos/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Técnicas do Sistema de Duplo-Híbrido
15.
Biochem J ; 429(1): 25-32, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20423332

RESUMO

Studies of mammalian splicing factors are often focused on small nuclear ribonucleoproteins or regulatory RNA-binding proteins, such as hnRNP (heterogeneous nuclear ribonucleoprotein) and SR proteins (serine/arginine-rich proteins); however, much less is known about the contribution of DExD/H-box proteins or RNA helicases in mammalian pre-mRNA splicing. The human DEAH-box protein DHX16 [also known as DBP2 (DEAD-box protein 2)], is homologous with Caenorhabditis elegans Mog-4, Schizosaccharomyces pombe Prp8 and Saccharomyces cerevisiae Prp2. In the present study, we show that DHX16 is required for pre-mRNA splicing after the formation of a pre-catalytic spliceosome. We found that anti-DHX16 antiserum inhibited the splicing reaction in vitro and the antibody immunoprecipitated pre-mRNA, splicing intermediates and spliceosomal small nuclear RNAs. Cells that expressed DHX16 that had a mutation in the helicase domain accumulated unspliced intron-containing minigene transcripts. Nuclear extracts isolated from the dominant-negative DHX16-G724N-expressing cells formed splicing complex B, but were impaired in splicing. Adding extracts containing DHX16-G724N or DHX16-S552L mutant proteins to HeLa cell nuclear extracts resulted in reduced splicing, indicating that the mutant protein directly inhibited splicing in vitro. Therefore our results show that DHX16 is needed for human pre-mRNA splicing at a step analogous to that mediated by the S. cerevisiae spliceosomal ATPase Prp2.


Assuntos
RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Catálise , RNA Helicases DEAD-box/química , Células HeLa , Humanos , Precursores de RNA/química , Proteínas de Saccharomyces cerevisiae/química , Spliceossomos/enzimologia , Spliceossomos/genética , Spliceossomos/metabolismo
16.
RNA Biol ; 7(2): 253-62, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20215858

RESUMO

ADAR2, a member of the adenosine deaminase family of proteins, is the enzyme that edits the Q/R site in the GluR-B transcript, an important physiological A-to-I editing event. ADAR2 pre-mRNA undergoes a number of known alternative splicing events, affecting its function. Here we describe a novel alternatively spliced exon, located within intron 7 of the human gene, which we term "exon 7a". This alternatively spliced exon is highly conserved in the mammalian ADAR2 gene. It has stop codons in all three frames and is down regulated by NMD. We show that the level of exon 7a inclusion differs between different human tissues, with the highest levels of inclusion in skeletal muscle, heart and testis. In the brain, where the level of editing is known to be high, the level of exon 7a inclusion is low. The new alternative form was also found in supraspliceosomes, which constitute the nuclear pre-mRNA processing machine. The high conservation of the novel ADAR2 alternative exon in mammals indicates a physiological importance for this exon.


Assuntos
Adenosina Desaminase/genética , Adenosina/metabolismo , Processamento Alternativo/genética , Inosina/metabolismo , Especificidade de Órgãos/genética , Edição de RNA/genética , Adenosina Desaminase/metabolismo , Animais , Sequência de Bases , Códon sem Sentido/genética , Sequência Conservada/genética , Éxons/genética , Perfilação da Expressão Gênica , Células HeLa , Humanos , Íntrons/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Spliceossomos/enzimologia , Regulação para Cima/genética
17.
Mol Cell ; 35(4): 454-66, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19716790

RESUMO

Brr2 is a unique DExD/H box protein required for catalytic activation and disassembly of the spliceosome. It contains two tandem helicase cassettes that both comprise dual RecA-like domains and a noncanonical Sec63 unit. The latter may bestow the enzyme with unique properties. We have determined crystal structures of the C-terminal Sec63 unit of yeast Brr2, revealing three domains, two of which resemble functional modules of a DNA helicase, Hel308, despite lacking significant sequence similarity. This structural similarity together with sequence conservation between the enzymes throughout the RecA-like domains and a winged helix domain allowed us to devise a structural model of the N-terminal active cassette of Brr2. We consolidated the model by rational mutagenesis combined with splicing and U4/U6 di-snRNA unwinding assays, highlighting how the RecA-like domains and the Sec63 unit form a functional entity that appears suitable for unidirectional and processive RNA duplex unwinding during spliceosome activation and disassembly.


Assuntos
DNA Helicases/química , Proteínas Fúngicas/química , RNA Helicases/química , Spliceossomos/enzimologia , Leveduras/enzimologia , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Relação Estrutura-Atividade , Fatores de Tempo , Leveduras/genética
18.
Int J Biochem Cell Biol ; 41(2): 417-23, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18926921

RESUMO

Spliceosomal introns play a key role in eukaryotic genome evolution and protein diversity. A large Rab GTPase family has been identified in a unicellular eukaryote Trichomonas vaginalis. However, the characteristics of introns in Rab genes of T. vaginalis have not been investigated previously. In this study, we identified a 25-bp spliceosomal intron in the T. vaginalis Rab1a (TvRab1a) gene, the smallest intron in T. vaginalis to be characterized to date. This intron contains a canonical splice site at both 5' (GT) and 3' (AG) ends, and a putative branch-point sequence (TCTAAC) that matches the Trichomonad consensus sequence of ACTAAC except for the first nucleotide. The position and phase of the TvRab1a intron are evolutionarily conserved in Rab1 homologous genes across at least five eukaryotic supergroups, including Opisthokonta, Amoebozoa, Excavata, Chromalveolata, and Plantae. These results strongly suggest that the TvRab1a intron is likely to be an ancient spliceosomal intron, and it can therefore be used as a phylogenetic marker to evaluate particular eukaryotic groupings. Identification and characterization of the TvRabla intron may provide an insight into the evolution of the large Rab repertoire in T. vaginalis.


Assuntos
Íntrons , Spliceossomos/genética , Trichomonas vaginalis/genética , Proteínas rab1 de Ligação ao GTP/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sequência Conservada , Evolução Molecular , Genoma de Protozoário , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Spliceossomos/enzimologia , Trichomonas vaginalis/enzimologia
19.
RNA ; 14(9): 1782-90, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18648072

RESUMO

Group II introns are found in organelles, bacteria, and archaea. Some harbor an open reading frame (ORF) with reverse transcriptase, maturase, and occasionally endonuclease activities. Group II introns require the assistance of either intron-encoded or free-standing maturases to excise from primary RNA transcripts in vivo. Some ORF-containing group II introns were shown to be mobile retroelements that invade new DNA sites by retrohoming or retrotransposition. Group II introns are also hypothesized to be the ancestors of the spliceosome-dependent nuclear introns and the small nuclear RNAs (snRNAs--U1, U2, U4, U5, and U6) that are part of the spliceosome. The ability of some fragmented group II introns to undergo splicing in trans supports the theory that the snRNAs evolved from portions of group II introns. Here, we developed a Tn5-based genetic screen to explore the trans-splicing potential of the Ll.LtrB group II intron from the Gram-positive bacterium Lactococcus lactis. Proficient trans-splicing variants of Ll.LtrB were selected using a highly sensitive trans-splicing/conjugation screen. We report that numerous fragmentation sites located throughout Ll.LtrB support splicing in trans, showing that this intron is remarkably more tolerant to fragmentation than expected from the fragmentation sites uncovered within natural trans-splicing group II introns. This work unveils the great versatility of group II intron fragments to assemble and accurately trans-splice their flanking exons in vivo.


Assuntos
Proteínas de Bactérias/metabolismo , Íntrons , Lactococcus lactis/enzimologia , Lactococcus lactis/genética , Trans-Splicing , Proteínas de Bactérias/genética , Elementos de DNA Transponíveis/genética , Conformação de Ácido Nucleico , Spliceossomos/enzimologia
20.
RNA ; 14(9): 1697-703, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18658120

RESUMO

The X-ray crystal structure of an excised group II self-splicing intron was recently solved by the Pyle group. Here we review some of the notable features of this structure and what they may tell us about the catalytic active site of the group II ribozyme and potentially the spliceosome. The new structure validates the central role of domain V in both the structure and catalytic function of the ribozyme and resolves several outstanding puzzles raised by previous biochemical, genetic and structural studies. While lacking both exons as well as the cleavage sites and nucleophiles, the structure reveals how a network of tertiary interactions can position two divalent metal ions in a configuration that is ideal for catalysis.


Assuntos
Processamento Alternativo , Íntrons , RNA Catalítico/química , Spliceossomos/química , Spliceossomos/enzimologia , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Íons/química , Metais/química , Conformação de Ácido Nucleico , RNA Catalítico/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...